
February 2000 The Delphi Magazine 53

COM Corner:
COM+ Events
by Steve Teixeira

The typical picture we imagine
when we think about the rela-

tionship between COM client and
server objects is fairly linear: cli-
ents invoke methods on servers
and servers do stuff in response to
the client call and optionally pro-
vide some data back to the client in
the form of a return value and out
parameters. This relationship is
probably an accurate representa-
tion of more than 90% of COM
client/server interactions, but you
don’t have to be a COM guru to
realize that this model is limited,
particularly with regard to clients
having the ability to be quickly
updated when some server data
changes.

The simplest way to obtain such
a notification would be for clients
to poll servers on a periodic basis
in order to check whether the
information which they’re inter-
ested in has changed. However, the
disadvantages of polling are pretty
self-evident: clients waste a lot of
cycles sending polls, servers like-
wise waste a lot of clock cycles
responding to polls, extraneous
network traffic may be generated,
and the overall scalability of the
system is diminished by the sum of
all this increased load on client,
server and wire.

More desirable, but still low-
tech, is a system whereby clients
can pass servers one or more
pre-defined interfaces to call back
on when the information in ques-
tion changes. However, this
system essentially has to be
re-invented for every different
interface you wish to use, and it is
incumbent upon the server to
write specialised code to track
multiple client connections.

Traditional COM provides a
more efficient and structured solu-
tion to this problem, which I’ve
written about several times in this
column, called events. This solu-
tion involves the use of the connec-
tion points, which provide servers
with the ability to track clients that
wish to be notified of information
changes, as well as the means for
servers to call client methods to
make the notifications. Connection
points are an example of what is
known as a Tightly Coupled Event
(TCE) system. In a TCE system, cli-
ents and servers are mutually
aware of the other’s identity. Addi-
tionally, TCE systems require that
clients and servers be running
simultaneously, and they provide
no means for filtering of events.
The connection point system also
has the inherent disadvantages of
being rather complex to imple-
ment and use, clients are also

forced to implement entire event
interfaces, even if they are only
interested in a single method of the
interface.

COM+, which will be released in
mid-February as a part of Windows
2000, contains a new event system
that solves some of these prob-
lems and adds some nice features.
The COM+ event model is known
as a Loosely Coupled Event (LCE)
system. It is referred to as such
because there is no hard connec-
tion between servers (known as
event publishers) and clients
(known as event subscribers).
Instead, publishers register with
the COM+ catalog the events they
wish to publish, and subscribers
separately register with the COM+
catalog the events in which they
are interested. When a publisher
fires an event, the COM+ runtime
reviews its database to determine
which clients should receive an
event notification and sends the
notification to those clients.
What’s more, clients don’t even
have to be running when the event
is fired; COM will activate clients
upon invocation of the event. Addi-
tionally, the event registration
model supports method level
granularity. This means that sub-
scribers aren’t forced to imple-
ment methods for events in which
they have no interest. Figure 1 pro-
vides an illustration of the COM+
event system.

As Figure 1 shows, the process
begins when the publisher
registers a new event class. This
can be done using the Component
Services administration tool or
using the ICOMAdminCatalog.Ins-
tallEventClass() method. Once
registered, the object that imple-
ments the event class will reside in
the COM+ runtime. The publisher,
or another object, can then call the
CoCreateInstance COM API call to
create an instance of this object
and call methods on this object to
fire events.

On the subscriber side, the
subscriber can register for an
event class permanently, using the
Component Services administra-
tion tool, or in a transient manner
using the COM admin catalog API.
Permanent subscription means

Administration

Event publisher Event Class Subscription Event Subscriber

Registration

Invocation

Creation

COM+ Event System

Invocation Invocation

Registration

➤ Figure 1: COM+ event system.

54 The Delphi Magazine Issue 54

that the subscribing component
doesn’t need to be active when the
event fires: the COM+ runtime will
automatically create the compo-
nent before invoking the event.
Transient subscriptions are
intended for components which
are already active and wish to
receive event notifications only
temporarily. When the publisher
fires an event, COM+ will iterate
over all the registered subscribers,
invoking the event on each. Note
that it is not possible to determine
the order in which COM+ will iter-
ate over the clients when invoking
an event. However, it is possible to
gain some control over the firing of
events using event filters, which I
will describe in more detail later.

Speaking practically, creating a
COM+ Event can be boiled down
into a 5-step process:

1. Creation of an event class
server.

2. Registration and configura-
tion of the event class server.

3. Creation of a subscriber
server.

4. Registration and configura-
tion of the subscriber server.

5. Publishing of events.
I’ll take these steps one at a time in
order to demonstrate a Delphi 5
implementation of COM+ events.

Event Class Server Creation
The first step to creating an event
class server is to create an
in-process COM server to which
you will add a COM object. The
important distinction to bear in
mind between creating an event
class server and creating a regular
COM server is that an event class
server carries with it no implementa-
tion, it only serves as a vehicle for
definition of the event class.

I create an event class server in
Delphi by using the ActiveX
Library wizard to create a new
COM server DLL and the Automa-
tion Object wizard to generate the
event class and interface. I’ll call
this object EventObj. The wizards
leave me in the Type Library Editor
to complete the definition of the
server, where I add a method to the
IEventObj interface, called MyEvent,

that will serve as the event
method. The implementation file
produced for this type library is
shown in Listing 1.

That’s all there is to creating the
event class server. Note that it’s
not necessary to register this
server: registration is handled spe-
cially, as I will discuss next.

Register And Configure
In this phase you take your first
step towards becoming good
friends with the Component Ser-
vices administration tool. You’ll
use this tool often as you develop
COM+ applications. You’ll find it in
the Administrative Tools group of
the Programs section of the Start
menu (I’m using Windows 2000
Server, Release Candidate 3). The
first thing you’ll need to do in the
Component Services administra-
tion tool is create a new COM+
application. You can do this by
selecting New | Application from
the local menu of the COM+ Applica-
tions node in the tree view on the
left. This will invoke the COM+
Application Install Wizard, as
shown in Figure 2. In this wizard, I
choose to create a new application
from scratch and call it Delphi
Event Demo.

Once the COM+ application has
been installed, I can install the
event class server into the applica-
tion, by selecting New | Component
from the local menu of the Compo-
nents node under the new applica-
tion in the tree. This invokes the
COM Component Install Wizard,
part of which is shown in Figure 3.

In this wizard, I choose to install
a new event class, and I select the

unit PubMain;
interface
uses
ComObj, ActiveX, Publisher_TLB, StdVcl;

type
TEventObj = class(TAutoObject, IEventObj)
protected
function MyEvent(const EventParam: WideString): HResult; safecall;

end;
implementation
uses ComServ;
function TEventObj.MyEvent(const EventParam: WideString): HResult;
begin
end;
initialization
TAutoObjectFactory.Create(ComServer, TEventObj, Class_EventObj,
ciMultiInstance, tmApartment);

end.

➤ Listing 1

➤ Below: Figure 2

➤ Right: Figure 3

February 2000 The Delphi Magazine 55

file name of the event class server
that I just created. With that done,
it’s time to move on to creation of
the subscriber server.

Subscriber Server Creation
A subscriber server is essentially a
standard Delphi Automation
server. The only catch is that you
need to implement the event
interface that you defined when
creating the event class server. I
accomplish this by using the type
library from the event class server
in the subscriber server and
adding the IEventObj interface to
the implements list of the coclass.

Figure 4 shows the SubObj
coclass, containing both
ISubObj and IEventObj, and
the implementation file for
this type library is shown in
Listing 2.

You can see that the
implementation of the
event is quite earth-
shattering: a message box is

displayed showing a real, live, text
string! Again, there is no need to
register this server as you would a
standard COM server. That
housekeeping is handled in the
next step.

Subscriber Server
Registration And
Configuration
To register the subscriber
server, I reopen the Compo-
nent Services administration
tool, and choose New | Compo-
nent from the local menu just
as I did in for the event class
server. The difference is that

this time I choose to install a new
component in the COM Compo-
nent Install Wizard and select the
subscriber DLL.

Once the subscriber server is
installed, I can create a new sub-
scription for the subscriber server
I do this by selecting New | Sub-
scription from the Subscriptions
node under my new subscriber
server. This brings up the New
Subscription wizard, which allows
me to define the correlation
between the publisher and
subscriber interfaces or methods.
In this case, I select IEventObj for
the subscriber method(s) and for

➤ Figure 4

➤ Figure 5

56 The Delphi Magazine Issue 54

unit TestU;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
Publisher_TLB, StdCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
procedure Button1Click(Sender: TObject);

private
FEvent: IEventObj;

end;
var Form1: TForm1;
implementation
uses ComObj, ActiveX;
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject);
begin
OleCheck(CoCreateInstance(CLASS_EventObj, nil, CLSCTX_ALL, IEventObj, FEvent));
FEvent.MyEvent('This is a clever string');

end;
end.

➤ Above: Listing 2 ➤ Below: Listing 3

➤ Figure 7

the event class I choose Publisher.
EventObj. I enter Subscription of
Doom as the name of this subscrip-
tion and choose to enable the
server immediately, as shown in
Figure 5.

Figure 6 shows the complete
COM+ application definition as
shown in the Component Services
administration tool.

Publishing Events
The setup is now complete, so all
that is left is to publish the event by
creating an instance of the
EventObj class and calling the
IEventObj.MyEvent method. The
simplest way to do this is in a small
test application, as I’ve shown in
Listing 3.

Figure 7 shows the result of
pushing the magic button. Note
that the event subscriber is
created automatically by COM+
and the event handler code is
executed.

You might notice that COM+
takes a few moments to invoke the
event the first time through. This is
due to the fairly substantial
amount of internal infrastructure
that needs to be loaded in order to
fire COM+ events. The bottom line
here is that you shouldn’t depend
on events being fired back to sub-
scribers in real time. They’ll get
there soon, but not instantly.

Beyond The Basics
While this article provides a solid
grounding in the fundamentals of
the COM+ event model, there are a
couple of powerful features that I’d
like to mention.

The first is queued events. These
are the synthesis of COM+ events
and queued components (known
as MSMQ components in
pre-COM+ days). Essentially, this
functionality provides the ability

to fire events to disconnected
components, and those events
can be played back at a later
time.

The other advanced topic
worthy of mention is event fil-
ters, which come in two flavours:
publisher filters and parameter
filters. Publisher filters provide a
means for publishers to control
the order and firing of an event
method by an event class. Parame-
ter filters enable publishers to
intercept events based on the
value of the parameters of that
event.

Summary
This article was intended to give
you the background of why COM+
events are such a great step for-
ward in the world of COM event
notifications, an understanding of
the theory of how COM+ events
operate, and the knowledge
needed to build applications that

unit SubMain;
interface
uses
ComObj, ActiveX, Subscriber_TLB, StdVcl, Publisher_TLB;

type
TSubObj = class(TAutoObject, ISubObj, IEventObj)
protected
function MyEvent(const EventParam: WideString): HResult; safecall;

end;
implementation
uses ComServ, Windows;
function TSubObj.MyEvent(const EventParam: WideString): HResult;
begin
MessageBox(0, PChar(string(EventParam)), 'COM+ Event!', MB_OK);
Result := S_OK;

end;
initialization
TAutoObjectFactory.Create(ComServer, TSubObj, Class_SubObj,
ciMultiInstance, tmApartment);

end.

take advantage of COM+ events in
Delphi. Using this technique for
LCEs can help you solve some of
the traditional disadvantages of
TCEs and create more scalable
and more efficient distributed
applications.

Steve Teixeira is the VP of
software development at DeVries
Data System and co-author of
Delphi 5 Developer’s Guide. You
can reach Steve by email at
steve@dvdata.com

➤ Figure 6

	Event Class Server Creation
	Register And Configure
	Subscriber Server Creation
	Subscriber Server Registration and Configuration
	Publishing Events
	Beyond The Basics
	Summary

